

Proca Stule 233-L \& 234-L Rubher Joints

Proco Style 233-L Rubber Expansion Joints are designed for piping systems that experience large lateral offsets due to settlement. The Style 233-L is a low profile triple arch design with a built-in reinforcing ring ot the top of the arch to provide extra stability for lateral movements up to 4 ".

Proco Style FA233-L Rubber Expansion Joints are designed for piping systems carying heavy solids that experience large lateral offsets due to settlement. The Style FA233-L is a low profile triple filled arch design with a built-in reinforcing ring at the top of the arch to provide extra stability for lateral movements up to $2^{\prime \prime}$.

Proco Style 234-L Rubber Expansion Joints are designed for piping systems that experience large lateral offsets due to settlement. The Style 234-L is a low profile quadruple arch design with a builtin reinforcing ring ot the top of the arch to provide extra stability for lateral movements up to 8 ".

Proco Style FA234-L Rubber Expansion Joints are designed for piping systems carrying heavy solids that experience large lateral offsets due to settlement. The Style FA234-L is a low profile quadruple filled arch design with a built-in reinforcing ring at the top of the arch to provide extra stability for lateral movements up to 4 ".

Features and Benefits:

Absorbs Directional Movement

Thermal movements appear in any rigid pipe system due to temperature changes. The Style 233-L and 234-L low profile arch allows for axial compression or axial extension, Iateral deflection as well as angular and torsional movements. (Note: Rated movements in this publication are based on one plane movements. Multiple movement conditions are based on a multiple movement calculation. Contact Proco for information when designing multiple pipe movements.)

Absorbs Vibration, Noise and Shock

The Style 233-L and 234-L expansion joints are manufactured with the integral rubber flange joining the body at a true 90° angle. This ensures the product will install snug against the mating pipe flange free of voids creating less turbulence in the pipe system.
Compensates for Misalignment
The Style 233-L and 234-L expansion joints are designed for large lateral movements due to long term settlement.
Wide Service Range and Less Weight
Engineered to operate up to 145 PSIG (nominal size dependent) or up to 250° (elastomer dependent), the Series 233-L and 234-L can be specified for a wide range of piping system requirements. The Series 233-L and 234-L rubber expansion joints are constructed in various elastomers with rubber impregnated polyester fire cord and a reiiforcing ring at the top of the arch to provide stability in large lateral offset conditions.
Material Identification
All 233-L and 234-L expansion joints are strip branded with cure dates and elastomer designations.
Large Inventory
Proco Products, Inc. maintains one of the largest inventories of rubber expansion joints in the world. Please contact us for price and availability.

Protecting Piping and Equipment Systems from Stress/Motion

Table 1: Available Matericls * Temperatures				
For Specific Chemical Compatibilites, See:	PROCO "Chemical To Elastomer Guide"			

Style 233-L

Style FA233-L

Style 234-L

Style FA234-L

Style 2ese-L Performance Data

Table 2: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)	$\begin{aligned} & \text { Neutral } \\ & \text { Length } \\ & \text { Inch / } /(\mathrm{mm}) \end{aligned}$	233-L Movement Capability: ${ }^{1}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{2}$			Weights lbs / (kgs) ${ }^{3}$	
											或
$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	57.6°	2^{0}	$\begin{gathered} 10.03 \\ (64) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} \hline 5.0 \\ (2.3) \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$
$\begin{aligned} & 2.5 \\ & (65) \end{aligned}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.57 \\ & \text { (40) } \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	51.6^{0}	2°	$\begin{gathered} 13.04 \\ (84) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.8) \end{gathered}$	$\begin{gathered} \\ \hline 4.5 \\ (2.0) \end{gathered}$
$\begin{gathered} 3 \\ (80) \end{gathered}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$46.4{ }^{0}$	2^{0}	$\begin{aligned} & 16.44 \\ & (106) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 9.0 \\ (4.1) \end{gathered}$	$\begin{gathered} 5.5 \\ (2.5) \end{gathered}$
$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	38.2°	2^{0}	$\begin{aligned} & 24.41 \\ & (157) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 12.0 \\ & (5.3) \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6) \end{gathered}$
$\begin{gathered} 5 \\ (125) \end{gathered}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$32.2{ }^{\text {º }}$	2^{0}	$\begin{aligned} & 33.95 \\ & (219) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 14.0 \\ & (6.5) \end{aligned}$	$\begin{gathered} \hline 8.5 \\ (3.9) \end{gathered}$
$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{gathered} 20 \\ (500) \\ \hline \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4 \\ (100) \end{gathered}$	$27.7{ }^{\circ}$	2^{0}	$\begin{aligned} & 45.06 \\ & (290) \\ & \hline \end{aligned}$	$\begin{array}{r} 145 \\ (10) \\ \hline \end{array}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 26.0 \\ (11.6) \end{gathered}$	$\begin{gathered} 9.5 \\ (4.3) \\ \hline \end{gathered}$
$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$21.5{ }^{\circ}$	2^{0}	$\begin{aligned} & 72.00 \\ & (469) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 34.0 \\ (15.2) \end{gathered}$	$\begin{aligned} & \hline 14.5 \\ & (6.6) \end{aligned}$
$\begin{gathered} 10 \\ (250) \end{gathered}$	$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	17.50	2°	$\begin{gathered} 105.22 \\ (678) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 42.0 \\ (19.6) \end{gathered}$	$\begin{aligned} & 17.0 \\ & (7.7) \end{aligned}$
$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{gathered} \hline 4 \\ (100) \end{gathered}$	14.7 ${ }^{\circ}$	2^{0}	$\begin{gathered} 153.25 \\ (988) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 56.0 \\ (25.4) \end{gathered}$	$\begin{gathered} 24.5 \\ (33.5) \end{gathered}$
$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$15.7{ }^{\circ}$	2^{0}	$\begin{aligned} & 200.27 \\ & (1292) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 69.0 \\ (31.2) \end{gathered}$	$\begin{gathered} 27.0 \\ (12.2) \end{gathered}$
$\begin{gathered} 16 \\ (400) \\ \hline \end{gathered}$	$\begin{gathered} 22 \\ (550) \\ \hline \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} \hline 4 \\ (100) \end{gathered}$	$13.8{ }^{\circ}$	2°	$\begin{aligned} & 253.58 \\ & (1636) \\ & \hline \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \\ \hline \end{gathered}$	$\begin{gathered} 82.0 \\ (37.1) \\ \hline \end{gathered}$	$\begin{gathered} 33.5 \\ (15.2) \\ \hline \end{gathered}$
$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	12.3°	2°	$\begin{aligned} & 313.17 \\ & (2020) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 90.0 \\ (40.8) \end{gathered}$	$\begin{gathered} 34.0 \\ (15.4) \end{gathered}$
$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$11.1{ }^{\text {º}}$	2^{0}	$\begin{aligned} & 379.05 \\ & (2445) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 127.0 \\ & (52.9) \end{aligned}$	$\begin{gathered} 38.0 \\ (17.2) \end{gathered}$
$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$9.3{ }^{\circ}$	2^{0}	$\begin{aligned} & 562.25 \\ & (3627) \end{aligned}$	$\begin{gathered} 109 \\ (7.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 150.0 \\ & (67.7) \end{aligned}$	$\begin{gathered} 48.0 \\ (21.8) \end{gathered}$
$\begin{gathered} 28 \\ (700) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	8.0°	2°	$\begin{aligned} & 742.93 \\ & \text { (4793) } \end{aligned}$	$\begin{gathered} 109 \\ (7.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 217.0 \\ & (98.3) \end{aligned}$	$\begin{gathered} \hline 55.0 \\ (24.9) \end{gathered}$

Table 2: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)	$\begin{gathered} \text { Neutral } \\ \text { Length } \\ \text { Inch } /(\mathrm{mm}) \end{gathered}$	233-L Movement Capability: ${ }^{1}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{2}$			Weights lbs / (kgs) ${ }^{3}$	
											.
$\begin{array}{r} 30 \\ (750) \\ \hline \end{array}$	$\begin{gathered} 26 \\ (650) \\ \hline \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1.97 \\ (50) \\ \hline \end{array}$	$\begin{gathered} 4 \\ (100) \\ \hline \end{gathered}$	7.5 ${ }^{\circ}$	2^{0}	$\begin{aligned} & 842.69 \\ & (5436) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{gathered} 232.0 \\ (105.4) \end{gathered}$	$\begin{array}{\|c\|} \hline 63.0 \\ (28.6) \end{array}$
$\begin{gathered} 36 \\ (900) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (650) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.75 \\ & (70) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.97 \\ & (50) \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	6.2°	2^{0}	$\begin{gathered} 1179.68 \\ (7610) \\ \hline \end{gathered}$	$\begin{aligned} & 73 \\ & (5) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 287.0 \\ (130.0) \end{gathered}$	$\begin{array}{\|c} 76.0 \\ (34.5) \\ \hline \end{array}$
$\begin{gathered} 42 \\ (1050) \end{gathered}$	$\begin{gathered} \hline 28 \\ (700) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & \hline 1.97 \\ & (50) \\ & \hline \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$5.4{ }^{\circ}$	2°	$\begin{aligned} & 1573.22 \\ & (10149) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 73 \\ & \text { (5) } \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{gathered} 369.0 \\ (179.8) \end{gathered}$	$\begin{aligned} & 100.0 \\ & (45.4) \end{aligned}$
$\begin{gathered} 48 \\ (1200) \end{gathered}$	$\begin{gathered} 28 \\ (700) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$4.7{ }^{\circ}$	2^{0}	$\begin{aligned} & 2023.31 \\ & (13053) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 428.0 \\ (193.9) \end{gathered}$	$\begin{aligned} & 132.0 \\ & (59.9) \end{aligned}$
$\begin{gathered} 54 \\ (1350) \end{gathered}$	$\begin{gathered} 28 \\ (700) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$4.2{ }^{\circ}$	2°	$\begin{aligned} & \hline 2460.24 \\ & (15872) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 548.0 \\ (248.5) \end{gathered}$	$\begin{aligned} & 150.0 \\ & (68.0) \end{aligned}$
$\begin{gathered} 60 \\ (1500) \end{gathered}$	$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} \hline 4 \\ (100) \end{gathered}$	$3.8{ }^{\circ}$	2^{0}	$\begin{aligned} & 3016.00 \\ & (19458) \end{aligned}$	$\begin{aligned} & 73 \\ & \text { (5) } \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 667.0 \\ (302.7) \end{gathered}$	$\begin{aligned} & 200.0 \\ & (90.7) \\ & \hline \end{aligned}$

NOTES:

1. Concurrent Movements - Concurrent movements are developed when two or more movements in a pipe system occur at the same time.

If multiple movements exceed single arch design there may be a need for addilional arches.
To perform calculation for concurrent movement when a pipe system design has more than one movement, please use the following formula:
$\frac{\text { Actual Axial Compression }}{\text { Rated Axial Compression }}+\frac{\text { Actual Axial Extension }}{\text { Rated Axial Extension }}+\frac{\text { Actual Lateral }(X)}{\text { Rated Loteral }(X)}+\frac{\text { Actual Lateral }(Y)}{\text { Rated Lateral }(Y)}=/<1$
Calculation must be equal to or less than 1 for expansion joint to operate within concurrent movement capability.
2. Pressure rating is based on 170° F operating temperature with a $4: 1$ safety factor. At higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing at 1.5 times rated maximum catalog pressure or design working pressure of pipe system for 10 minutes is available upon request.
3. Weights are approximate.
4. The degree of angular movement is based on the maximum rated extension.
5. Torsional movement is expressed when the expansion joint is at neutral length.
6. Calculation of Thrust (Thrust Factor). When expansion joints are installed in the pipeline, the static portion of the thrust is calculated as a product of the area of the I.D. of the arch of the expansion joint times the maximum pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds.
Take Design, surge or test pressure X thrust factor to calculate end thrust.

7. Parts listed at $26^{\prime \prime} \mathrm{Hg} / 660 \mathrm{~mm}$ Hg vacuum have a design rating of $30^{\prime \prime} \mathrm{Hg} / 762 \mathrm{~mm} \mathrm{Hg}$ (full vacuum). Vacuum rating is based on neutrol installed length, without external load.
Products should not be installed "extended" on vacuum applications.

Style FAPse-L Performance Data

Table 3: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)	$\begin{aligned} & \text { Neutral } \\ & \text { Length } \\ & \text { Inch } /(\mathbf{m m}) \end{aligned}$	FA233-L Movement Capability: From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{2}$			Weights lbs / (kgs) ${ }^{3}$	
$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	28.80	$1{ }^{0}$	$\begin{aligned} & 3.14 \\ & (20) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 6.0 \\ (2.9) \end{gathered}$	$\begin{gathered} \hline 4.0 \\ (1.8) \end{gathered}$
$\begin{aligned} & 2.5 \\ & (65) \end{aligned}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	25.8º	$1{ }^{\text {º}}$	4.91 (31)	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} \hline 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 4.5 \\ (2.0) \end{gathered}$
$\begin{gathered} \mathbf{3} \\ (80) \end{gathered}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$23.2{ }^{\text {º}}$	$1{ }^{0}$	$\begin{aligned} & \hline 7.07 \\ & (45) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (5.1) \end{aligned}$	$\begin{gathered} \hline 5.5 \\ (2.5) \end{gathered}$
$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	19.10	$1{ }^{\text {º}}$	$\begin{gathered} 12.57 \\ (81) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.6) \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6) \end{gathered}$
$\begin{gathered} 5 \\ (125) \end{gathered}$	$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	16.10	$1{ }^{0}$	$\begin{aligned} & 19.64 \\ & (126) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 18.0 \\ & (8.1) \end{aligned}$	$\begin{gathered} 8.5 \\ (3.9) \end{gathered}$
$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	13.80	$1{ }^{0}$	$\begin{aligned} & 28.27 \\ & (182) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 33.0 \\ (14.5) \end{gathered}$	$\begin{gathered} 9.5 \\ (4.3) \end{gathered}$
$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$10.8{ }^{\circ}$	$1{ }^{10}$	$\begin{aligned} & 50.27 \\ & (324) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 43.0 \\ (19.0) \end{gathered}$	$\begin{aligned} & 14.5 \\ & (6.6) \end{aligned}$
$\begin{gathered} 10 \\ (250) \end{gathered}$	$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	8.80	${ }^{10}$	$\begin{aligned} & 78.54 \\ & (506) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 53.0 \\ (24.5) \end{gathered}$	$\begin{aligned} & 17.0 \\ & (7.7) \end{aligned}$
$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} .78 \\ (20) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	7.3 ${ }^{\circ}$	$1{ }^{0}$	$\begin{gathered} 113.10 \\ (729) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 70.0 \\ (31.8) \end{gathered}$	$\begin{gathered} 24.5 \\ (11.1) \end{gathered}$
$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 1.38 \\ & \text { (35) } \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	7.80	$1{ }^{0}$	$\begin{gathered} 153.94 \\ (993) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 86.0 \\ (39.0) \end{gathered}$	$\begin{gathered} \hline 27.0 \\ (12.2) \end{gathered}$
$\begin{gathered} 16 \\ (400) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 1.38 \\ & \text { (35) } \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$6.9{ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 201.06 \\ & (1297) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 103.0 \\ & (46.4) \end{aligned}$	$\begin{gathered} 33.5 \\ (15.4) \end{gathered}$
$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 1.38 \\ & \text { (35) } \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$6.1{ }^{0}$	$1{ }^{\text {º }}$	$\begin{aligned} & 254.47 \\ & (1641) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 113.0 \\ & (51.0) \end{aligned}$	$\begin{gathered} 34.0 \\ (15.4) \end{gathered}$
$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 1.38 \\ & \text { (35) } \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$5.6{ }^{\circ}$	$1{ }^{10}$	$\begin{aligned} & 314.16 \\ & (2026) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 159.0 \\ & (65.9) \end{aligned}$	$\begin{gathered} 38.0 \\ (17.2) \end{gathered}$
$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{gathered} 22 \\ (550) \end{gathered}$	$\begin{aligned} & 1.38 \\ & \text { (35) } \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$4.6{ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 452.39 \\ & (2918) \end{aligned}$	$\begin{aligned} & 109 \\ & (7.5) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 188.0 \\ & (84.6) \end{aligned}$	$\begin{gathered} 48.0 \\ (21.8) \end{gathered}$
$\begin{gathered} 28 \\ (700) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 1.38 \\ & \text { (35) } \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$4.0{ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 615.75 \\ & (3972) \end{aligned}$	$\begin{gathered} 109 \\ (7.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 271.0 \\ (122.9) \end{gathered}$	$\begin{gathered} 55.0 \\ (24.9) \end{gathered}$

See Notes Page 4

Table 3：Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom．I．D． Inch／（mm）	$\begin{gathered} \text { Neutral } \\ \text { Length } \\ \text { Inch } /(\mathrm{mm}) \end{gathered}$	FA233－L Movement Capability： From Neutral Position （Non－Concurrent）					Operating Conditions ${ }^{2}$			Weights lbs／（kgs）${ }^{3}$	
										$\begin{aligned} & \text { 를 } \\ & \text { 言 } \\ & \text { 흔 } \\ & \text { 咅 } \end{aligned}$	䂞产
$\begin{gathered} 30 \\ (750) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (650) \\ \hline \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \\ & \hline \end{aligned}$	$\begin{array}{r} 1.0 \\ (25) \\ \hline \end{array}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$3.8{ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 706.86 \\ & (4560) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 290.0 \\ (131.8) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 63.0 \\ (28.6) \\ \hline \end{array}$
$\begin{gathered} 36 \\ (900) \\ \hline \end{gathered}$	$\begin{gathered} \hline 26 \\ (650) \\ \hline \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.0 \\ (25) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	3．1º	$1{ }^{0}$	$\begin{gathered} 1017.88 \\ (6566) \\ \hline \end{gathered}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 359.0 \\ (162.5) \end{gathered}$	$\begin{array}{\|c} \hline 7.0 \\ (34.5) \\ \hline \end{array}$
$\begin{gathered} 42 \\ (1050) \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ (700) \\ \hline \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \\ & \hline \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$2.7{ }^{\circ}$	$1{ }^{0}$	$\begin{gathered} \hline 1385.44 \\ (8938) \end{gathered}$	$\begin{aligned} & \hline 73 \\ & \text { (5) } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{gathered} 495.0 \\ (224.8) \end{gathered}$	$\begin{array}{\|l} \hline 100.0 \\ (45.4) \\ \hline \end{array}$
$\begin{gathered} 48 \\ (1200) \end{gathered}$	$\begin{gathered} 28 \\ (700) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$2.4{ }^{0}$	$1{ }^{0}$	$\begin{aligned} & 1809.56 \\ & (11674) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 535.0 \\ (242.4) \end{gathered}$	$\begin{aligned} & 132.0 \\ & (59.9) \end{aligned}$
$\begin{gathered} 54 \\ (1350) \end{gathered}$	$\begin{gathered} \hline 28 \\ (700) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$2.1{ }^{0}$	$1{ }^{0}$	$\begin{aligned} & 2290.22 \\ & (14775) \end{aligned}$	$\begin{aligned} & 73 \\ & \text { (5) } \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 685.0 \\ (310.6) \end{gathered}$	$\begin{aligned} & 150.0 \\ & (68.0) \end{aligned}$
$\begin{gathered} 60 \\ (1500) \end{gathered}$	$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 2 \\ (50) \end{gathered}$	$1.9{ }^{\circ}$	$1{ }^{\text {º}}$	$\begin{aligned} & 2827.43 \\ & (18241) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 833.0 \\ (378.4) \end{gathered}$	$\begin{aligned} & 200.0 \\ & (90.7) \end{aligned}$

NOTES：

1．Concurrent Movements－Concurrent movements are developed when two or more movements in a pipe system occur ot the same time．
If multiple movements exceed single arch design there may be a need for additional arches．
To perform calculation for concurrent movement when a pipe system design has more than one movement，please use the following formula：

$\overline{\text { Rated Axial Compression }}+\overline{\text { Rated Axial Extension }}+\overline{\text { Rated Loteral }(X)}+\overline{\text { Rated Lateral }(Y)}=/<1$
Calculation must be equal to or less than 1 for expansion joint to operate within concurrent movement capability．
2．Pressure rating is based on 170° F operating temperature with a $4: 1$ safety factor．At higher temperatures，the pressure rating is reduced slightily．Hydrostatic testing at 1.5 times rated maximum catalog pressure or design working pressure of pipe system for 10 minutes is available upon request．

3．Weights are approximate．
4．The degree of angular movement is based on the maximum rated extension．
5．Torsional movement is expressed when the expansion joint is at neutral length．
6．Calculation of Thrust（Thrust Factor）．When expansion joints are installed in the pipeline， the static portion of the thrust is calculated as a product of the area of the I．D．of the arch of the expansion joint times the maximum pressure（design，test or surge）that will occur in the line．The result is a force expressed in pounds．
Take Design，surge or test pressure X thrust factor to calculate end thrust．

7．Parts listed at $26^{\prime \prime} \mathrm{Hg} / 660 \mathrm{~mm}$ Hg vacuum have a design rating of $30^{\prime \prime} \mathrm{Hg} / 762 \mathrm{~mm}$ Hg（full vacuum）．Vacuum rating is based on neutral installed length，without external lood． Products should not be installed＂extended＂on vacuum applications．

Stule 234-L Performance Data

Table 4: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)	$\begin{gathered} \text { Neutral } \\ \text { Length } \\ \text { Inch } /(\mathrm{mm}) \end{gathered}$	234-L Movement Capability: From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{2}$			Weights lbs / (kgs) ${ }^{3}$	
											踁
$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$63.1{ }^{\text {º }}$	2^{0}	$\begin{gathered} 10.03 \\ (64) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} \hline 6.0 \\ (2.8) \end{gathered}$	$\begin{gathered} \hline 4.0 \\ (1.8) \end{gathered}$
$\begin{aligned} & 2.5 \\ & (65) \end{aligned}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	57.6°	2^{0}	$\begin{gathered} 13.04 \\ (84) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 7.0 \\ (3.4) \end{gathered}$	$\begin{gathered} 4.5 \\ (2.0) \end{gathered}$
$\begin{gathered} \mathbf{3} \\ (80) \end{gathered}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$52.7{ }^{0}$	2^{0}	$\begin{aligned} & 16.44 \\ & (106) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 11.0 \\ & (5.1) \end{aligned}$	$\begin{gathered} 5.5 \\ (2.5) \end{gathered}$
$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	44.50	2^{0}	$\begin{aligned} & 24.41 \\ & \text { (157) } \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 15.0 \\ & (6.6) \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6) \end{gathered}$
$\begin{gathered} 5 \\ (125) \end{gathered}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	38.2^{0}	2^{0}	$\begin{aligned} & 33.95 \\ & (219) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 18.0 \\ & (8.1) \end{aligned}$	$\begin{gathered} 8.5 \\ (3.9) \end{gathered}$
$\begin{gathered} \mathbf{6} \\ (150) \end{gathered}$	$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$33.3{ }^{\circ}$	2^{0}	$\begin{aligned} & 45.06 \\ & (290) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 31.0 \\ (14.1) \end{gathered}$	$\begin{gathered} 9.5 \\ (4.3) \end{gathered}$
$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	26.2°	2^{0}	$\begin{aligned} & 72.00 \\ & (469) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 41.0 \\ (18.4) \end{gathered}$	$\begin{aligned} & 14.5 \\ & (6.6) \end{aligned}$
$\begin{gathered} 10 \\ (250) \end{gathered}$	$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	21.50	2^{-}	$\begin{gathered} 105.22 \\ (678) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 50.0 \\ (22.6) \end{gathered}$	$\begin{aligned} & 17.0 \\ & (7.7) \end{aligned}$
$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 2.75 \\ & (70) \end{aligned}$	$\begin{aligned} & 1.97 \\ & (50) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	18.2 ${ }^{\text {º}}$	2^{0}	$\begin{aligned} & 153.25 \\ & (988) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 66.0 \\ (30.0) \end{gathered}$	$\begin{gathered} 24.5 \\ (33.5) \end{gathered}$
$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$18.6{ }^{\circ}$	2^{0}	$\begin{aligned} & 200.27 \\ & (1292) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 82.0 \\ (37.3) \end{gathered}$	$\begin{gathered} 27.0 \\ (12.2) \end{gathered}$
$\begin{gathered} 16 \\ (400) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$16.5{ }^{\circ}$	2^{0}	$\begin{aligned} & 253.58 \\ & (1636) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 97.0 \\ (44.1) \end{gathered}$	$\begin{gathered} 33.5 \\ (15.2) \end{gathered}$
$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$14.7{ }^{\circ}$	2^{0}	$\begin{aligned} & 313.17 \\ & (2020) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 107.0 \\ & (48.7) \end{aligned}$	$\begin{gathered} 34.0 \\ (15.4) \end{gathered}$
$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	13.3°	2^{0}	$\begin{aligned} & 379.05 \\ & (2445) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 141.0 \\ & (63.8) \end{aligned}$	$\begin{gathered} 38.0 \\ (17.2) \end{gathered}$
$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	11.1 ${ }^{0}$	2^{0}	$\begin{aligned} & 562.25 \\ & (3627) \end{aligned}$	$\begin{gathered} 109 \\ (7.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 180.0 \\ & (81.4) \end{aligned}$	$\begin{gathered} 48.0 \\ (21.8) \end{gathered}$
$\begin{gathered} 28 \\ (700) \end{gathered}$	$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$9.6{ }^{\circ}$	2^{0}	$\begin{aligned} & 742.93 \\ & (4793) \end{aligned}$	$\begin{gathered} 109 \\ (7.5) \end{gathered}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 260.0 \\ (117.9) \end{gathered}$	$\begin{gathered} 55.0 \\ (24.9) \end{gathered}$

See Notes Page 4

Table 4: Sizes • Movements • Design Pressures • Weights

Expan	$\begin{gathered} \text { Neutral } \\ \text { Length } \\ \text { Inch / } /(\mathrm{mm}) \end{gathered}$	234-L Movement Capability: ${ }^{1}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{2}$			Weights lbs / (kgs) ${ }^{3}$	
Size Nom. I.D. Inch / (mm)										$\begin{aligned} & \text { ㅎㅡㅡ } \\ & \text { 言 } \\ & \text { 흔 } \\ & \text { 咅 } \end{aligned}$	\%
$\begin{gathered} 30 \\ (750) \\ \hline \end{gathered}$	$\begin{gathered} 30 \\ (750) \\ \hline \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	8.9 ${ }^{\circ}$	2^{0}	$\begin{aligned} & 842.69 \\ & (5436) \\ & \hline \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \\ \hline \end{array}$	$\begin{gathered} 278.0 \\ (126.3) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 63.0 \\ (28.6) \\ \hline \end{array}$
$\begin{gathered} \hline 36 \\ (900) \end{gathered}$	$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	7.5 ${ }^{\circ}$	2^{0}	$\begin{gathered} 1179.68 \\ (7610) \end{gathered}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 341.0 \\ (154.6) \end{gathered}$	$\begin{gathered} 76.0 \\ (34.5) \end{gathered}$
$\begin{gathered} 42 \\ (1050) \\ \hline \end{gathered}$	$\begin{gathered} \hline 32 \\ (800) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 3.15 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} \hline 8 \\ (200) \\ \hline \end{gathered}$	6.4^{0}	2^{0}	$\begin{aligned} & 1573.22 \\ & (10149) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 73 \\ & \text { (5) } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 468.0 \\ (212.3) \\ \hline \end{gathered}$	$\begin{array}{\|l} \hline 100.0 \\ (45.4) \end{array}$
$\begin{gathered} 48 \\ (1200) \end{gathered}$	$\begin{gathered} \hline 32 \\ (800) \end{gathered}$	$\begin{aligned} & \hline 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	5.6	2^{0}	$\begin{aligned} & 2023.31 \\ & (13053) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 567.0 \\ (257.3) \end{gathered}$	$\begin{aligned} & 132.0 \\ & (59.9) \end{aligned}$
$\begin{gathered} 54 \\ (1350) \end{gathered}$	$\begin{gathered} \hline 32 \\ (800) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$5.0{ }^{\circ}$	2°	$\begin{aligned} & 2460.24 \\ & (15872) \end{aligned}$	$\begin{aligned} & 73 \\ & \text { (5) } \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 646.0 \\ (293.2) \end{gathered}$	$\begin{aligned} & 150.0 \\ & (68.0) \end{aligned}$
$\begin{gathered} 60 \\ (1500) \end{gathered}$	$\begin{gathered} 38 \\ (950) \end{gathered}$	$\begin{aligned} & 3.15 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.36 \\ & (60) \end{aligned}$	$\begin{gathered} 8 \\ (200) \end{gathered}$	$4.5{ }^{\circ}$	2^{0}	$\begin{aligned} & 3016.00 \\ & (19458) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 834.0 \\ (378.5) \end{gathered}$	$\begin{aligned} & 200.0 \\ & (90.7) \end{aligned}$

NOTES:

1. Concurrent Movements - Concurrent movements are developed when two or more movements in a pipe system occur ot the same time.

If multiple movements exceed single arch design there may be a need for additional arches.
To perform calculation for concurrent movement when a pipe system design has more than one movement, please use the following formula:
$\frac{\text { Actual Axial Compression }}{\text { Rated Axial Compression }}+\frac{\text { Actual Axial Extension }}{\text { Rated Axial Extension }}+\frac{\text { Actual Lateral }(X)}{\text { Rated Loteral }(X)}+\frac{\text { Actual Lateral }(Y)}{\text { Rated Lateral }(Y)}=/<1$
Calculation must be equal to or less than 1 for expansion joint to operate within concurrent movement capability.
2. Pressure rating is based on 170° F operating temperature with a $4: 1$ safety factor. At higher temperatures, the pressure rating is reduced slightly. Hydrostatic testing at 1.5 times rated maximum catalog pressure or design working pressure of pipe system for 10 minutes is available upon request.
3. Weights are approximate.
4. The degree of angular movement is based on the maximum rated extension.
5. Torsional movement is expressed when the expansion joint is at neutral length.
6. Calculation of Thrust (Thrust Factor). When expansion joints are installed in the pipeline, the static portion of the thrust is calculated as a product of the area of the I.D. of the arch of the expansion joint times the maximum pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds.
Take Design, surge or test pressure X thrust factor to calculate end thrust.

7. Parts listed at $26^{\prime \prime} \mathrm{Hg} / 660 \mathrm{~mm}$ Hg vacuum have a design rating of $30^{\prime \prime} \mathrm{Hg} / 762 \mathrm{~mm} \mathrm{Hg}$ (full vacuum). Vacuum rating is based on neutral installed length, without external lood.
 Products should not be installed "extended" on vacuum applications.

Stule FAP34-L Performance Data

Table 5: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)	```Neutral Length Inch / (mm)```	FA234-L Movement Capability: ${ }^{1}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{2}$			Weights lbs / (kgs) ${ }^{3}$	
											硣
$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	31.50	$1{ }^{0}$	$\begin{aligned} & 3.14 \\ & (20) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 8.0 \\ (3.5) \end{gathered}$	$\begin{gathered} 4.0 \\ (1.8) \end{gathered}$
$\begin{aligned} & 2.5 \\ & (65) \end{aligned}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$28.8{ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 4.91 \\ & (31) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (4.3) \end{aligned}$	$\begin{gathered} 4.5 \\ (2.0) \end{gathered}$
$\begin{gathered} \mathbf{3} \\ (80) \end{gathered}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$26.3{ }^{\circ}$	$1{ }^{\text {º }}$	$\begin{aligned} & 7.07 \\ & (45) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 14.0 \\ & (6.4) \end{aligned}$	$\begin{gathered} 5.5 \\ (2.5) \end{gathered}$
$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$22.2{ }^{\circ}$	$1{ }^{\text {º}}$	$\begin{gathered} 12.57 \\ (81) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 18.0 \\ & (8.3) \end{aligned}$	$\begin{gathered} 8.0 \\ (3.6) \end{gathered}$
$\begin{gathered} \mathbf{5} \\ (125) \end{gathered}$	$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{aligned} & 1.38 \\ & \text { (35) } \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	19.10	$1{ }^{\text {º}}$	$\begin{aligned} & 19.64 \\ & (126) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 22.0 \\ (10.1) \end{gathered}$	$\begin{gathered} 8.5 \\ (3.9) \end{gathered}$
$\begin{gathered} \mathbf{6} \\ (150) \end{gathered}$	$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$16.6{ }^{\circ}$	$1{ }^{\text {º }}$	$\begin{aligned} & 28.27 \\ & (182) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 39.0 \\ (17.6) \end{gathered}$	$\begin{gathered} 9.5 \\ (4.3) \end{gathered}$
$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	13.10	$1{ }^{0}$	$\begin{aligned} & 50.27 \\ & (324) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 51.0 \\ (23.0) \end{gathered}$	$\begin{aligned} & 14.5 \\ & (6.6) \end{aligned}$
$\begin{gathered} 10 \\ (250) \end{gathered}$	$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$10.7{ }^{\circ}$	$1{ }^{\text {º }}$	$\begin{aligned} & 78.54 \\ & (506) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 62.0 \\ (28.3) \end{gathered}$	$\begin{aligned} & 17.0 \\ & (7.7) \end{aligned}$
$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (35) \end{aligned}$	$\begin{gathered} 1.0 \\ (25) \end{gathered}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$9.1{ }^{10}$	$1{ }^{\text {º }}$	$\begin{gathered} 113.10 \\ (729) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 83.0 \\ (37.5) \end{gathered}$	$\begin{gathered} 24.5 \\ (11.1) \end{gathered}$
$\begin{gathered} 14 \\ (350) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$9.3{ }^{0}$	$1{ }^{\text {º }}$	$\begin{gathered} 153.94 \\ (993) \end{gathered}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 103.0 \\ & (46.6) \end{aligned}$	$\begin{gathered} 27.0 \\ (12.2) \end{gathered}$
$\begin{gathered} 16 \\ (400) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	8.2°	$1{ }^{0}$	$\begin{aligned} & 201.06 \\ & (1297) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 121.0 \\ & (55.1) \end{aligned}$	$\begin{gathered} 33.5 \\ (15.4) \end{gathered}$
$\begin{gathered} 18 \\ (450) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	7.3 ${ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 254.47 \\ & (1641) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 134.0 \\ & (60.9) \end{aligned}$	$\begin{gathered} 34.0 \\ (15.4) \end{gathered}$
$\begin{gathered} 20 \\ (500) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	6.6	$1{ }^{\underline{0}}$	$\begin{aligned} & 314.16 \\ & (2026) \end{aligned}$	$\begin{aligned} & 145 \\ & (10) \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{aligned} & 176.0 \\ & (79.8) \end{aligned}$	$\begin{gathered} 38.0 \\ (17.2) \end{gathered}$
$\begin{gathered} 24 \\ (600) \end{gathered}$	$\begin{gathered} 26 \\ (650) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	5.5	$1{ }^{\text {º }}$	$\begin{aligned} & 452.39 \\ & (2918) \end{aligned}$	$\begin{gathered} 109 \\ (7.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 224.0 \\ (101.8) \end{gathered}$	$\begin{gathered} 48.0 \\ (21.8) \end{gathered}$
$\begin{gathered} 28 \\ (700) \end{gathered}$	$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$4.8{ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 615.75 \\ & (3972) \end{aligned}$	$\begin{gathered} 109 \\ (7.5) \end{gathered}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 325.0 \\ (147.4) \end{gathered}$	$\begin{gathered} 55.0 \\ (24.9) \end{gathered}$

Table 5: Sizes • Movements • Design Pressures • Weights

Expansion Joint Size Nom. I.D. Inch / (mm)	$\begin{gathered} \text { Neutral } \\ \text { Length } \\ \text { Inch / } /(\mathrm{mm}) \end{gathered}$	FA234-L Movement Capability: ${ }^{1}$ From Neutral Position (Non-Concurrent)					Operating Conditions ${ }^{2}$			Weights lbs / (kgs) ${ }^{3}$	
											㜢菏
$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$4.4{ }^{0}$	$1{ }^{10}$	$\begin{aligned} & 706.86 \\ & (4560) \end{aligned}$	$\begin{aligned} & 73 \\ & \text { (5) } \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 348.0 \\ (157.9) \end{gathered}$	$\begin{gathered} 63.0 \\ (28.6) \end{gathered}$
$\begin{gathered} \hline 36 \\ (900) \end{gathered}$	$\begin{gathered} 30 \\ (750) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$3.7{ }^{\circ}$	$1{ }^{0}$	$\begin{gathered} 1017.88 \\ (6566) \end{gathered}$	$\begin{aligned} & 73 \\ & (5) \end{aligned}$	$\begin{gathered} \hline 26 \\ (660) \end{gathered}$	$\begin{gathered} 426.0 \\ (193.3) \end{gathered}$	$\begin{gathered} 76.0 \\ (34.5) \end{gathered}$
$\begin{gathered} 42 \\ (1050) \end{gathered}$	$\begin{gathered} 32 \\ (800) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$3.2{ }^{\text {º}}$	$1{ }^{0}$	$\begin{gathered} 1385.44 \\ (8938) \end{gathered}$	$\begin{aligned} & 73 \\ & \text { (5) } \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 585.0 \\ (265.4) \end{gathered}$	$\begin{aligned} & 100.0 \\ & (45.4) \end{aligned}$
$\begin{gathered} 48 \\ (1200) \end{gathered}$	$\begin{gathered} 32 \\ (800) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$2.8{ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 1809.56 \\ & (11674) \end{aligned}$	$\begin{aligned} & 73 \\ & \text { (5) } \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{gathered} 709.0 \\ (321.6) \end{gathered}$	$\begin{aligned} & 132.0 \\ & (59.9) \end{aligned}$
$\begin{gathered} 54 \\ (1350) \end{gathered}$	$\begin{gathered} 32 \\ (800) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	2.5	$1{ }^{0}$	$\begin{aligned} & 2290.22 \\ & (14775) \end{aligned}$	$\begin{aligned} & 73 \\ & (5) \\ & \hline \end{aligned}$	$\begin{gathered} 26 \\ (660) \end{gathered}$	$\begin{gathered} 807.0 \\ (366.5) \end{gathered}$	$\begin{aligned} & 150.0 \\ & (68.0) \end{aligned}$
$\begin{gathered} 60 \\ (1500) \end{gathered}$	$\begin{gathered} 38 \\ (950) \end{gathered}$	$\begin{aligned} & 1.57 \\ & (40) \end{aligned}$	$\begin{aligned} & 1.18 \\ & (30) \end{aligned}$	$\begin{gathered} 4 \\ (100) \end{gathered}$	$2.2{ }^{\circ}$	$1{ }^{0}$	$\begin{aligned} & 2827.43 \\ & (18241) \end{aligned}$	$\begin{aligned} & 73 \\ & \text { (5) } \end{aligned}$	$\begin{array}{\|c\|} \hline 26 \\ (660) \end{array}$	$\begin{aligned} & 1043.0 \\ & (473.1) \end{aligned}$	$\begin{aligned} & 200.0 \\ & (90.7) \end{aligned}$

NOTES:

1. Concurrent Movements - Concurrent movements are developed when two or more movements in a pipe system occur ot the same time.

If multiple movements exceed single arch design there may be a need for additional arches.
To perform calculation for concurrent movement when a pipe system design has more than one movement, please use the following formula:
$\frac{\text { Actuol Axial Compression }}{\text { Roted Axial Compression }}+\frac{\text { Actual Axial Extension }}{\text { Rated Axial Extension }}+\frac{\text { Actual Lateral }(X)}{\text { Roted Lateral }(X)}+\frac{\text { Actual Lateral }(Y)}{\text { Roted Loteral }(Y)}=/<1$
Calculation must be equal to or less than 1 for exponsion joint to operate within concurient movement capobility.
2. Pressure rating is bossed on 170° F operoting temperature with a $4: 1$ safery foctor. At higher temperatures, the pressure rating is reduced slightily. Hydrostaic testing of 1.5 times rated maximum catolog pressure or design working pressure of pipe system for 10 minutes is available upon request.
3. Weights are approximate.
4. The degree of angular movement is based on the moximum rated extension.
5. Torsional movement is expressed when the expansion joint is ot neutrol lengith.
6. Calculation of Thrust (Thrust Factor). When exponsion joints are installed in the pipeline, the static portion of the thrust is calculated as a product of the area of the I.D. of the arch of the exponsion joint times the moximum pressure (design, test or surge) that will occur in the line. The result is a force expressed in pounds.
Toke Design, surge or test pressure X thrust factor to calculate end thrust.

7. Parts listed ot $26^{\prime \prime} \mathrm{Hg} / 660 \mathrm{~mm}$ Hg vacuum hove a design rating of $30^{" 1} \mathrm{Hg} / 762 \mathrm{~mm}$ Hg (foll vocuum). Vaccum rating is bosed on neutrol installed length, without external lood. Products should not be installed "extended" on vacuum applications.

Style 233-L \& 2e4-L Drilling Chart

Tal	6	Standerd Diflling for Proco Ruther Expusison Jinits							Thidxuess of Moterids for PRoco Ruther Expusion Joints				
Nominal Pipe Size Expansion Joint I.D. Inch /(mm)		Flange Dimensions							Material Thickness for Bolt Length Requirements				
		$\begin{array}{\|l\|l} \hline \text { Flange } \\ \text { Inch / } \end{array}$	$\begin{aligned} & \text { eO.D. }(m \mathrm{~m}) \end{aligned}$		Circle		$\begin{aligned} & \text { Size } 0 \\ & \text { Inch } \end{aligned}$	$\text { of Holol } /(m m)$					
2	(50)	6.00	(152.40)	4.75	(120.65)	4	0.750	(19.05)	0.375	(9.53)	0.472	(11.99)	
2.5	(65)	7.00	(177.80)	5.50	(139.70)	4	0.550	(19.05)	0.375	(9.53)	0.472	(11.99)	c
3	(80)	7.50	(190.50)	6.00	(152.40)	4	0.750	(19.05)	0.375	(9.53)	0.472	(11.99)	s
4	(100)	9.00	(228.60)	7.50	(190.50)	8	0.750	(19.05)	0.375	(9.53)	0.472	(11.99)	\bigcirc
5	(125)	10.00	(254.00)	8.50	(215.90)	8	0.875	(22.23)	0.375	(9.53)	0.551	(14.00)	E
6	(150)	11.00	(279.40)	9.50	(241.30)	8	0.875	(22.23)	0.375	(9.53)	0.551	(14.00)	
8	(200)	13.50	(342.0)	11.75	(298.45)	8	0.875	(22.23)	0.375	(9.53)	0.630	(16.00)	-
10	(250)	16.00	(406.40)	14.25	(361.95)	12	1.000	(25.40)	0.375	(9.53)	0.630	(16.00)	${ }^{5}$
12	(300)	19.00	(482.60)	17.00	(431.80)	12	1.000	(25.40)	0.375	(9.53)	0.748	(19.00)	E
14	(350)	21.00	(533.40)	18.75	(476.25)	12	1.125	(28.58)	0.375	(9.53)	0.866	(22.00)	
16	(400)	23.50	(596.00)	21.25	(539.75)	16	1.125	(28.58)	0.375	(9.53)	0.866	(22.00)	
18	(450)	25.00	(635.00)	22.75	(577.85)	16	1.250	(31.75)	0.375	(9.53)	0.866	(22.00)	A
20	(500)	27.50	(698.50)	25.00	(635.00)	20	1.250	(31.75)	0.375	(9.53)	0.884	(24.99)	+
22	(550)	29.50	(749.30)	27.25	(692.15)	20	1.375	(34.93)	0.375	(9.53)	0.884	(24.99)	G
24	(600)	32.00	(812.80)	29.50	(749.30)	20	1.375	(34.93)	0.375	(9.53)	0.884	(24.99)	F
26	(650)	34.25	(869.95)	31.75	(806.32)	24	1.375	(34.93)	0.375	(9.53)	0.884	(24.99)	A
28	(700)	36.50	(927.10)	34.00	(863.60)	28	1.375	(34.93)	0.375	(9.53)	0.884	(24.99)	$\stackrel{\text { G }}{\text { E }}$
30	(750)	38.75	(984.25)	36.00	(914.40)	28	1.375	(34.93)	0.375	(9.53)	0.884	(24.99)	T
36	(900)	46.00	(1168.40)	42.75	(1085.85)	32	1.625	(41.28)	0.375	(9.53)	0.884	(24.99)	+
42	(1050)	53.00	(1346.2)	49.50	(1257.30)	36	1.625	(41.28)	0.375	(9.53)	1.181	(30.00)	K
48	(1200)	59.50	(151.30)	56.00	(1422.40)	44	1.625	(41.28)	0.375	(9.53)	1.181	(30.00)	E
54	(1350)	66.25	(1682.75)	62.75	(1593.85)	44	2.000	(50.80)	0.375	(9.53)	1.181	(30.00)	s
60	(1500)	73.00	(1854.20)	69.25	(1758.95)	52	2.000	(50.80)	0.375	(9.53)	1.181	(30.00)	

Metric Conversion Formula: Nominal I.D.: in. x $25=$ mm; Dimensions/Thickness': in. x $25.4=\mathrm{mm}$.

Notes:

Flange Dimensions shown are in accordance with ANSI B16.1 and ANSI B16.5 Class 125/150, AWWA C-207-07, Tbl 2
and 3 - Class D, Table 4 - Class E. Hole size shown is $1 / 8^{\prime \prime}$ larger than AWWA Standard.

Limit Rads Upon Request

A - Retaining Ring Thickness.
B - Rubber Flange Thickness.
C - Adjacent Mating Flange Thickness (By Others).
D - Control Unit Plate Thickness.
E - Double Nut Thickness is determined by Control Rod Diameter.
F - Control Rod Bolt Length is defermined by A through $\mathrm{E}+\mathrm{OAL}$.
© - Control Rod Plate O.D.
H - Moximum Rod Diameter

Installation Instructions for Non-Metallic Expansion Joints

Make sure the exponsion joint rating for temperature, pressure, vacuum and movements match the system requirements. Contact the manufacturer for advice if the system requirements exceed those of the expansion joint selected. Check to make sure the elastomer selected is chemically compatible with the process fluid or gas.

Expansion joints are normally not designed to make up for piping misalignment errors. Piping should be lined up within $1 / 8^{\prime \prime}$. Misalignnment reduces the rated movements of the expansion joint and can induce severe stress and reduce service life. Pipe guides should be installed to keep the pipe aligned and to prevent undue displacement.
3. Anchoring:

Solid anchoring is required wherever the pipeline changes direction and expansion joints should be located as close as possibe to anchor points. If piping is not adequately anchored, control rods should be used. If anchors are not used, pressure thrust may cause excessive movement damaging the expansion joint.

Piping must be supported by hangers or anchors so expansion joints do not carry any pipe weight.

Install the expansion joint against the mating pipe flanges and install bolis so that the bolt head and washer are against the retaining rings. If washers are not used, flange leakage can result - particularly ot the split in the retaining rings. Flange-to-flange dimension of the expansion joint must math the breech opening. Make sure the mating flanges are clean and are flat faced type or no more than $1 / 16^{\prime \prime}$ raised face type. Never install expansion joints that utilize split retaining rings next to wafer type check or butterfly valves. Serious damage can result to a rubber joint of this type unless installed against full face flanges.

6. Boling Torque:

Table 7 shows the recommended torque ranges for non-metallic expansion joints with fullfaced rubber flanges: Torque specifications are approximate. Tighten bolts in stages using cross-bolt tightening pattern. If the ioint has integral fabric and rubber flanges, the bolits should be tight enough to make the rubber flange OD bulge between the retaining rings and the mating flange. After installation, the system should be pressurized and examined to confirm a proper seal. Torque bolis sufficiently to assure leak free operation ot hydrostatic test pressure.

7. Storage:

Ideal storage is in a warehouse with a relatively dry, cool location. Store flanges face down on a pallet or wooden plafform. Do not store other heavy items on top of expansion joints. Ten year sheff life can be expected with ideal conditions. If storage must be outroors, place on wooden plafform and joints should not be in contact with the ground. Cover with a tarpaulin.

Table 7	Approximate Sorque Values
Size	$20-40 \mathrm{ft} / \mathrm{lbs}$
$1^{\prime \prime}$ THRU $2^{\prime \prime}$	$25-60 \mathrm{ft} / \mathrm{lbs}$
$2.5^{\prime \prime}$ THRU $5^{\prime \prime}$	$35-140 \mathrm{ft} / \mathrm{lbs}$
$6^{\prime \prime}$ THRU $12^{\prime \prime}$	$50-180 \mathrm{ft} / \mathrm{lbs}$
$14^{\prime \prime}$ THRU $18^{\prime \prime}$	$50-200 \mathrm{ft} / \mathrm{lbs}$
$20^{\prime \prime}$ THRU $24^{\prime \prime}$	$60-70-300 \mathrm{ft} / \mathrm{lbs}$
$26^{\prime \prime}$ THRU $40^{\prime \prime}$	$70-30-300 \mathrm{ft} / \mathrm{lbs}$
$42^{\prime \prime}$ THRU $60^{\prime \prime}$	8

Do not lift with ropes or bars through the bolt holes. If lifiting through the bore, use padding or a saddle to distribute the weight. Make sure cables or forklift tines do not contact the rubber. Do not let expansion joints sit verically on the edges of the flanges for any period of time.
A. Do not insulate over a non-metallic exponsion joint; however, if insulation is required, it should be made removable to permit easy access to the flanges. This facilitates periodic inspection of the tightness of the joint boling.
B. It is acceptable (but not necessary) to lubricate the expansion joint flanges with a thin film of graphite dispersed in glycerin or water to ease disassembly ot a later time.
C. Do not weld in the near vicinity of a non-metallic joint.
D. If expansion joints are to be installed underground, or will be submerged in water, contact manufacturer for specific recommendations.
E. If the exponsion joint will be installed outdoors, make sure the cover moterial will withstand ozone, sunlight, etc.
F. Check the tightness of lead.free flanges two or three weeks after installation and retighten if necessary.

Warning: Expansion joints mav operate in pipelines or equipment carrying fluids and/or gasses at elevated temperature and pressures and may transport hazardous materials. Precautions should be taken to protect personnel in the event of leakage or splash. Rubber joints should not be installed in areas where inspection is impossible. Make sure proper drainage is available in the event of leakoge when operating personnel are not available.

Settlement Layout Examples

ALSO AVAILABLE FROM Proco Products, Inc.

Proco Products, Inc. can supply tied universal expansion joints or hinged universol expansion joints for large lateral movements.

2431 North Wigwam Dr. (95205) P.O. Box 590 - Stockton, CA 95201-0590 • USA

Water Environment Federation ${ }^{\circ}$
Preserving e Enbancing
the Globai Water Environment

REPRESENTED BY:
VALVETEK TRADING
42-A Congressional Avenue, Quezon City Tel\# 352-4262 / 332-5185 / 374-1495 Fax\# 332-7455

